Latent Tree Variational Autoencoder for Joint Representation Learning and Multidimensional Clustering
نویسندگان
چکیده
Recently, deep learning based clustering methods are shown superior to traditional ones by jointly conducting representation learning and clustering. These methods rely on the assumptions that the number of clusters is known, and that there is one single partition over the data and all attributes define that partition. However, in real-world applications, prior knowledge of the number of clusters is usually unavailable and there are multiple ways to partition the data based on subsets of attributes. To resolve the issues, we propose latent tree variational autoencoder (LTVAE), which simultaneously performs representation learning and multidimensional clustering. LTVAE learns latent embeddings from data, discovers multi-facet clustering structures based on subsets of latent features, and automatically determines the number of clusters in each facet. Experiments show that the proposed method achieves state-of-the-art clustering performance and reals reasonable multifacet structures of the data.
منابع مشابه
Stick-breaking Variational Autoencoders
We extend Stochastic Gradient Variational Bayes to perform posterior inference for the weights of Stick-Breaking processes. This development allows us to define a Stick-Breaking Variational Autoencoder (SB-VAE), a Bayesian nonparametric version of the variational autoencoder that has a latent representation with stochastic dimensionality. We experimentally demonstrate that the SB-VAE, and a sem...
متن کاملTVAE: Triplet-Based Variational Autoencoder using Metric Learning
Deep metric learning has been demonstrated to be highly effective in learning semantic representation and encoding information that can be used to measure data similarity, by relying on the embedding learned from metric learning. At the same time, variational autoencoder (VAE) has widely been used to approximate inference and proved to have a good performance for directed probabilistic models. ...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملTree-structured Variational Autoencoder
Many kinds of variable-sized data we would like to model contain an internal hierarchical structure in the form of a tree, including source code, formal logical statements, and natural language sentences with parse trees. For such data it is natural to consider a model with matching computational structure. In this work, we introduce a variational autoencoder-based generative model for tree-str...
متن کاملAdversarial Symmetric Variational Autoencoder
A new form of variational autoencoder (VAE) is developed, in which the joint distribution of data and codes is considered in two (symmetric) forms: (i) from observed data fed through the encoder to yield codes, and (ii) from latent codes drawn from a simple prior and propagated through the decoder to manifest data. Lower bounds are learned for marginal log-likelihood fits observed data and late...
متن کامل